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Abstract 

Mercury ion thruster  i so la tor  l i fet ime t e s t s  
were performed using different  i so la tor  materials 
and geometries. 
without the f l o w  of mercury through the i so la tors  
i n  an o i l  diffusion pumped vacuum f a c i l i t y  and cry- 
ogenically pumped b e l l  jar The onset of leakage 
current i n  i so la tors  tested occurred i n  time inter-  
vals ranging from a few hours t o  many hundreds of 
hours. In a l l  cases, surface contamination w a s  
responsible fo r  the onset of leakage current and 
subsequent i so la tor  fa i lure  Rate of increase of 
leakage current and the leakage current level  in- 
creased approximately exponentially with i so la tor  
temperature Careful at tention t o  shieiding tech- 
niques and the elimination of sources of metal 
oxides appear t o  have eliminated i so la tor  fa i lures  
as  a thruster  l i f e  Limiting mechanism. 

Tests were performed with and 

I .  Introduction 

Iso la tors  are required on mercury ion thrusters 
t o  decouple the thruster  high voltage from the pro- 
pellant feed system. 
especially desirable when multiple thruster  appli- 
cations are considered. The i so la tor  must be able 
t o  withstand high voltage (-2 kV) with acceptably 
low e l ec t r i ca l  leakage currents Studies have 
shown tha t  i so la tors  of both the segmented and tor-  
tuous path design 
thruster  voltages. f1,2,3) 

Iso la tor  performance i n  thrusters has been 

This requirement becomes 

an withstand the required 

inconsistent, Long l i f  times i n  small thrusters 
have been observed ( 4, ST However, leakage problems 
encounte ed ea r l i e r  with the SERT I1 thruster  iso- 
la tor  ( 6?f have not been completely eliminated i n  
the larger 30-cm thrusters which operate at higher 
temperatures. 

There does ex i s t  some l i t e r a tu re  on the sub- 
ject  of leakage currents through and conductivity 
of insulator materials. These data are also incon- 
s is tent  The conductivity of aluminum oxide i n  
vacuum and at high temperature has been obs rved t o  
decrease with ti i n  irradiat ion studies(7T and i n  
short term I n  the l a t t e r  two studies 
t h i s  e f fec t  was at tr ibuted t o  evaporation of sur- 
face impurities Onset of leakage c r n t  i n  a 
120-hr test w a s  observed by Hartman. fioT Insulator 
leakage has also been observed i n  lifetime t e s t s  of 
high temperature ceramic thyratrons and voltage- 
regulator tubes. This leakage was attribirted t o  
sputtering. (I1) Heater-cathode insulator f a i lu re s  
have been reported i n  vacuum tube studies. (12,13) 
These fa i lures  were at tr ibuted t o  metal or metal 
oxide migration through porous ceramic. 

The present study was undertaken t o  identify 
long term iso la tor  f a i lu re  mechanisms and develop 
an i so la tor  for long term large thruster  applica- 
tions Tests were conducted i n  b e l l  jars with and 
without mercury flow through the i so la tor  Differ- 
ent i so la tor  geometries, insulating materials, and 
heater and end cap materials were tes ted  The 

ef fec t  of a diffusion pump o i l  environment on iso- 
l a t o r  performance w a s  also observed 

11, Apparatus 

Iso la tors  

Figure 1 shows the general de t a i l s  of an iso- 
l a t o r  used with a mercury ion thruster  
of a cylindrical  ceramic (high purity aluminum 
oxide) body with end caps usually m a d e  of Kovar or 
tantalum. The ceramic is  metalized and the end 
caps are copper brazed t o  the metalized ceramic 
To withstand the required thruster  voltages 1-2 kV1, 
the i so la tor  body has in ternal  segments consistin 
of ceramic r ings and very f ine  metal mesh 
Heaters are attached t o  the i so la tor  t o  prevent 
mercury condensation during thruster  startup.  Dur- 
ing normal steady s t a t e  operation, the discharge 
plasma provides adequate heat f lux  t o  the i so la tor  
I n  the b e l l  jar i so la tor  t e s t s  reported herein, 
heaters provided a l l  the power required t o  reach 
the desired operating temperatures 
used for some iso la tor  t e s t s  t o  protect the iso- 
l a t o r  surface from ambient par t ic le  f lux  

The i so la tors  tes ted  are described i n  Table I 
and shown i n  Figure 2 Isolators A and B are parts  
of a standard cathode-isolator-vaporizer ( CIV) and 
main isolator-  vapori ze r ( MIV) assemblies , r e  spe c - 
tively, fabricated by Hughes Research Laboratories 
The C I V  t e s t s  were run with a cathode discharge, 
whereas the MIV designs were tested with no flow 

It consists 

ShieLds were 

Because it was found tha t  i so la tors  developed 
leakage current without the flow of mercury, iso- 
l a to r s  C and D (Fig. 2 (c )  and (a ) )  were fabricated 
without the in ternal  structure of the standard iso-  
l a to r s  This simplifications expedited fabrication. 

I so la tor  C (Fig 21 c l )  was fabricated from an 
aluminum oxide tube of unknown composition with 
TICUNI brazed tantalum end caps 
braze containing s i lve r  w a s  used as  f i l l e r  material 
following the i n i t i a l  brazing. ) Iso la tor  D 
(Fig. 2(d))  was s i m i l a r  t o  i so la tor  C except 
Lucalox w a s  used as the ceramic 
w a s  applied t o  e i ther  of the two iso la tors  before 
the brazing operation 
heaters were spotwelded on the end caps 

(Inadvertently, 

No metalizing 

Tantalum or Nichrome 

Isola tors  E and F (Fig. Z(e) and ( f ) ) ,  fabri-  
cated by Hughes Research Laboratories, were basic- 
a l l y  parts  of a modified C I V  assembly The f i n s  
were made for the purpose of providing a large 
thermal gradient between the in ter ior  and exterior 
of the i so la tor  t o  allow the surface of the iso- 
l a t o r  t o  run as cool as possible Different con- 
figurations of heaters and shields, t o  be described 
l a t e r  i n  more detai l ,  were tes ted  with these two 
iso la tors  

Isolator G (Fig 2(g))  consisted of a modified 
C I V  incorporating changes due t o  the observed re- 
su l t s  of the previous tes ts .  The end caps, vapor- 
izer,  vaporizer heater, and the copper braze joint  
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were nickelplated. 
s ta in less  s t ee l  were attached t o  the i so la tor  
mechanically without the use of spotwelding. This 
C I V  assembly w a s  tes ted  with an operating cathode 
with a solid barium impregnated inser t  

Shields made of nickel-plated 

Iron-constantan thermocouples were attached 
t o  both end caps of a l l  i so la tors  except i so la tor  A, 
t e s t  1, where only the vaporizer temperature was 
measured. 

Elec t r ica l  System 

An e l ec t r i c  schematic of a typical  i so la tor  
t e s t  including mercury flow, keeper and collector 
discharges i s  shown i n  Figure 3 Tests without 
mercury flow incorporated only two ac heater sup- 
p l i e s  with the high voltage applied across the 
i so la tor  I n  a l l  cases the cathode end of the 
i so la tor  was mounted on an e l ec t r i ca l  standoff and 
was held at ground potential  The opposite side 
was biased negatively by a high voltage dc power 
supply. This arrangement simulated the voltage 
gradient on a thruster  

The isolator current and high voltage were 
recorded on a s t r i p  chart recorder Currents and 
voltages of various supplies were read on appro- 
priate panel meters. Temperatures were read on 
panel meters. 

Vacuum Fac i l i t i e s  

A l l  t es ts ,  except t e s t  2 of i so la tor  E, were 
conducted i n  30-em diameter ports on the 7 6 m x 
18 3 m vacuum f a c i l i t y  with diffusion pumps A 
solid shield was ins ta l led  t o  separate from the 
isolator, the keeper and collector discharge efflux 
and the flux from the large f a c i l i t y  The pressure 
i n  the port with an operating discharge was approxi- 
mately 5x10m5 t o r r  

Test 2 of i so la tor  E was conducted i n  a cryo- 
genically pumped b e l l  j a r  No o i l  roughing o r  
diffusion pumps were used, thereby providing an 
oil- free environment, The pressure in  the b e l l  j a r  
was approximately 1 O X ~ O - ~  t o r r  during the t e s t  

111. Resuits 

A brief  summary of the resul t s  of the various 
t e s t s  appears i n  Table I1 In t h i s  table i so la tor  
operating conditions (temperature, applied high 
voltage, and discharge currents, i f  used) are pre- 
sented Also, the i n i t i a l  i so la tor  current at  
operating temperature and voltage is  shown as well 
as  the time of the onset of leakage current Acti- 
vation energies, as determined from the slope of 
the log of conductivity as  a function of the 
reciprocal of the temperature curve, a t  various 
leakage current levels  are also presented The 
resul t s  of each test w i l l  now be discussed i n  more 
de t a i  1, 

Iso la tor  A 

Test 1 A s  already described, i so la tor  A was 
part  of a standard 30-em thruster  C I V  assembly 
The cathode was run with a discharge current of 10A 
and discharge voltage of about 40 V. I n i t i a l  iso- 
l a to r  current a t  1300 V and vaporizer temperature 
(very near the i so la tor  temperature) of 330° C was 
approximately 2 4. The onset of leakage current, 

taken t o  be the point a t  which the r a t e  of increase 
with time increased rapidly, occurred a f t e r  approxi- 
mately 130 hours (Fig. 4( a )  After the onset of 
leakage current, the r a t e  of increase of the leak- 
age current at 330' c was approximately 1 1 IJA/hr 
and the r a t e  increased t o  2 7 &/hr a t  an i so la tor  
temperature of 345O C (Fig. 5) The p lo t  of the 
log of leakage current as a function of the recip- 
rocal  of the temperature i s  seen i n  Figure 6 It 
i s  noted tha t  the curve has essent ia l ly  two slopes 
from which activation energies of the conducting 
layer may be calculated 

The voltage-current characterist ics fo r  t h i s  
i so la tor  were observed t o  be ohmic 

After the test was terminated, the shield w a s  
removed and the ceramic examined. The surface 
appeared t o  have a s l ight  grayish color and the 
shield showed some discoloration but no obvious 
signs of a problem yere observed, The ceramic 
surface w a s  cleaned by aluminum oxide bead b las t-  
ing and a f t e r  re ins ta l la t ion  the leakage current 
returned very nearly t o  the i n i t i a l  current value 
of t e s t  1. The return of leakage current t o  i t s  
base level  a f t e r  surface cleaning w a s  t rue of a l l  
i so la tors  tested, which indicated tha t  the leakage 
current w a s  an outside surface phenomenon. 

Test 2 It was thought t ha t  the original 
shielding may not have been adequate t o  protect the 
isolator from the ambient par t ic le  flux and there- 
fore another shield was added A th in  stainless 
s t e e l  shield was spotwelded t o  the end cap on the 
vaporizer side of the i so la tor  The original  
shield was then spotwelded back t o  i t s  original  
position The onset of Leakage current occurred 
within several hours 

Test 3. Due t o  the short term fa i lure  of the 
double shielded isolator,  a t e s t  w a s  run with a11 
shields removed A s  usual, the isolator smface 
w a s  bead blasted previous t o  the t e s t  
cleaning process, however, it was possible tha t  
some of the nickel-plating on the Kovar end caps 
was removed In  t h i s  t e s t  the i n i t i a l  leakage 
current was higher than on previous t e s t s ,  but the 
time t o  the onset of leakage current was longer 
(210 hrs)  than fo r  the previous two t e s t s  
(Fig 4 ( a ) )  Sudden increases of leakage current, 
were observed a f t e r  vacuum tank shutdowns. 

Isolator B 

In  the 

Test I. During thruster  operation it had 
been observed tha t  MIV's did not suffer  the leak- 
age problem encountered i n  C I V ' s  Therefore, it 
w a s  decided t o  t e s t  a MIV, but a t  a higher tem- 
perature and higher voltages than typical  of 
thruster  operation. No mercury flow w a s  used f o r  
a l l  three MIV t e s t s  The i so la tor  began t o  f a i l  
at about 220 hours (Fig 4( a) ) 

Test 2 A t  t h i s  point it was thought tha t  
contamination of the aluminum oxide may have 
occurred during the sintering process of the 
ceramic Therefore, it was decided t o  grind off 
a layer of the outside surface of the ceramic 
The shield w a s  not replaced f o r  t h i s  t e s t  The 
i so la tor  began t o  f a i l  a f t e r  approximately 
350 hours. It should be noted tha t  because of 
the absence of the  shield the i so la tor  ran cooler 
during t h i s  t e s t  than i n  the previous t e s t .  
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Test 3. To t e s t  the possibil i ty t ha t  the 
diffusion pump environment was a possible cause fo r  
i so la tor  fa i lure  
placed d i rec t ly  on the i so la tor  surface The 
i n i t i a l  i so la tor  current w a s  0 4 4, considerably 
higher than on the previous two t e s t s  and it also 
began t o  f a i l  sooner (190 hrs )  than the previous 
two t e s t s  (Fig. 4(a) )  

a drop of diffusion pump o i l  was 

Isolator C 

This isolator w a s  fabricated i n  order t o  t e s t  
i so la tor  material e f fec ts  on isolator leakage 
already described, stock aluminum oxide was used, 
which w a s  probably of low puri ty 
history of the i so la tor  is shown i n  Fig. 4(b) The 
applied i so la tor  voltage was raised from 2 kV t o  
4 kV a f t e r  380 hours of operation during which t i m e  
the i so la tor  current w a s  constant. After 500 hours 
of operation the i so la tor  was removed from the 
vacuum f a c i l i t y  and inspected 
a film -1 3 cm long (114 of the t o t a l  length of the 
ceramic) had appeared on the negative high voltage 
side of the i so la tor  The t e s t  was resumed and the 
onset of leakage current w a s  observed a t  approxi- 
mately 600 hours The i so la tor  again w a s  inspected 
a f t e r  830 hours a t  a leakage current level  of 5 yA. 
The black f i la  of contamination had progressed t o  
about 2, 5 cm (1/2 of the t o t a l  ceramic length) 
Inspections of the isolator a t  1020 hours (leakage 
current at 13.5 +A) and l a t e r  a t  the end of the 
t e s t  (leakage current at 385 pA) revealed tha t  the 
black discoloration had not progressed any further 
This i so la tor  exhibited a non-ohmic volt-ampere 
characterist ic  at high voltages (Fig. 7) The 
characterist ic  became ohmic, however, as the level  
of leakage current increased. 

As 

The Lifetime 

It was found tha t  

The activation energy of the i so la tor  material 
before the onset of leakage current was 0 .63  eV 
However, a f t e r  the onset of leakage current, the 
activation energy decreased and was comparable t o  
those of other i so la tors  ( 0  15 - 0.30 eV) 

Spectrographic analysis of the black discolor- 
ation disclosed tha t  both sodium and s i lver  were 
present i n  the film. 

Isolator D 

Test 1 Isola tor  D was also fabricated t o  
study the ef fec ts  of different  isolator materials 
on i so la tor  leakage. The configuration of the 
isolator w a s  the same as  isolator C except Lucalox 
w a s  used as the ceramic body A shield made of 
aluminum oxide tubing was placed concentrically 
over the i so la tor  surface The i so la tor  fa i led  
within hours 

Test 2. The ceramic shield w a s  removed, tan- 
talum heaters replaced the Nichrome heaters, and 
a tantalum disk shield w a s  attached t o  each end 
cap (Fig Z ( d ) )  The shields were t o  protect the 
i so la tor  surface f r o m  the hot heater surfaces. 
Also the high voltage w a s  reduced from 4 kV t o  
2 kV 

I n i t i a l  i so la tor  current a t  410' C and 2 kV 
w a s  3 .2  pA. After approximately 700 hours the 
leakage current had dropped slowly t o  1 5  pA before 
s tar t ing  slowly t o  increase (Fig 4(b))  The in- 
crease was not the typical  exponential behavior 
observed i n  the previously tested isolators.  Sev- 

e r a l  increases i n  leakage current appear t o  be due 
t o  vacuum f a c i l i t y  shutdowns. 
over 2200 hours, the leakage current is only about 
11 PA. 

Iso la tor  E 

After accumulating 

The t e s t  i s  s t i l l  i n  progress, 

Test 1 The iso la tor  with the ground off 
outer surface was outgassed a t  5oOo C and tes ted  
at 460' C. The iso la tor  began t o  fail  only a f t e r  
approximately 6 hours (Fig. 4 (a ) )  It was observed 
tha t  a leakage path existed on both the outer and 
inner surfaces of the hollow isolator.  Exmina- 
t i on  of the  heaters a f t e r  the t e s t  revealed that 
the s ta in less  s t e e l  sheath of the heater as  well 
as  the Kovar end caps and shields had oxidized 

Test 2 I n  order t o  t e s t  the i so la tor  i n  an 
oil- free environment, i so la tor  E w a s  cleaned and 
ins ta l led  i n  a b e l l  jar cryogenically pumped with 
l iquid helium. 
with tantalum heaters 
i n  approximately 175 hours. 

The Nichrome heaters were replaced 
This i so la tor  began t o  f a i l  

I so la tor  F 

Test 1, Iso la tor  F (Fig 2(b)) ,  similar t o  
i so la tor  E, was tested with tantalum heaters i n  the 
large o i l  diffusion pumped vacuum f a c i l i t y  
220 hours of steady operation an inadvertent t e s t  
shutdown resulted in oxidation of the tantalum 
heaters The isolator fa i led  catastrophically 
a f t e r  resuming the t e s t  with the oxidized heaters. 

After 

Test 2 The i so la tor  w a s  cleaned by glass 
bead blast ing and new tantalum heaters were in- 
s ta l led  Also th in  tantalum shields were spot- 
welded on the isolator end caps t o  protect the 
ceramic surface from the hot heater surfaces and 
from the ambient flux. The iso la tor  f a i l ed  within 
very few hours 

Iso la tor  G 

I so la tor  G, a C I V  assembly (Fig. 2( g) 1, w a s  
fabricated keeping i n  mind the suspected fa i lure  
modes on a l l  the previous t e s t s  (see Discussion) 
I n  order t o  reduce oxidation of hot metal surfaces, 
the end caps, vaporizer, and shields were nickel- 
plated The shields were attached mechanically. 
instead of employing the spotwelding technique 
used before The i n i t i a l  current a t  330' C and 
1200 volts  was 1 3 4% During 985 hours no onset 
o f  leakage current has been observed [as defined 
before) There has been a small incremental in- 
crease during t h i s  time up t o  3.6 pA. It has been 
noted tha t  the increases were almost always asso- 
ciated with the startup of thrusters at other ports 
i n  the f a c i l i t y  The t e s t  is  s t i l l  i n  progress 

IV. Discussion 

This section w i l l  discuss the variation of the 
leakage current with time and as a function of sev- 
e r a l  parameters A discussion cf possible sources 
of isolator fa i lure  observed i n  the t e s t s  w i l l  be 
presented 

Leakage Current as a Function of Time 

Figures 41 a )  and ( b )  show leakage current as 
a function of time fo r  many of the i so la tors  tested. 
A t  t h i s  writing i so la tors  D and G are s t i l l  in  t e s t .  
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It is  convenient t o  discuss separately the observed 
short and long term effec ts  

Immediate f a i lu re s  were observed i n  t e s t  1 of 
i so la tor  A, t e s t  1 of i so la tor  D, and t e s t  2 of 
i so la tor  F A l l  three tests included the procedure 
of spotwelding shields on the i so la tors  It was 
concluded tha t  spotwelding may be detrimental t o  
i so la tor  performance i n  two ways. F i rs t ,  metal 
evaporated during the spotwelding procedure may con- 
taminate the i so la tor  surface, Second, the local- 
ized heating during the spotwelding may have oxi- 
dized the shields and/or end caps and also destroyed 
the nickel-plating on the end caps A s  w i l l  be 
discussed la ter ,  e i ther  phenomena could lead t o  
isolator fa i lure  Spotwelding was therefore elim- 
inated i n  fabrication of i so la tor  G, which a t  t h i s  
writing has accumulated 985 hours of operation 
without the onset of leakage current 

Another short term fa i lure  occurred in  t e s t  1 
with i so la tor  E. During t h i s  t e s t  the i so la tor  
w a s  outgassed a t  500' C which required heater tem- 
peratures i n  excess of 800' C Oxidation of heat- 
e r s  and end caps occurred,which was f e l t  t o  be the 
cause of the immediate fa i lure  The catastrophic 
fa i lure  i n  t e s t  1 of i so la tor  F was also determined 
t o  have occurred due t o  oxidation which took place 
a f t e r  an inadvertent pressure r i s e  i n  the b e l l  jar 

Isolators tha t  exhibited long l ifet imes showed 
Typ- several trends of i so la tor  current with time 

i ca l ly  a t  t e s t  start, the leakage current would 
f i r &  increase with increasing i so la tor  tempera- 
ture  and then slowly decrease for a few hours as 
the i so la tor  reached thermal equilibrium. 
short term decrease i n  leakage current may have 
been caused by evaporation of surface impurities1 
Long term decreases i n  i so la tor  current fo r  time 
periods of several hundred hours were observed in  
t e s t  1 of i so la tor  C and t e s t  2 of i so la tor  D 
This long term behavior is not presently understood 

The base Level of i so la tor  current, a f t e r  

The 

i n i t i a l  t ransient  behavior, varied from about 
0 1 pA t o  6 0 pA dependent on i so la tor  type and 
history It i s  presently f e l t  t ha t  the major 
share of the baseline leakage was across the sur- 
face rather than through the bulk ceramic, E s t i -  
mates of the bulk leakage are obscured by the Large 
range quoted for  the conductivity of aluminum oxide 
i n  the l i t e r a tu re  [g )  Use of the larger l i t e r a tu re  
values of bulk conductivity led t o  estimates of 
bulk currents l e s s  than 0 1 & at t e s t  conditions. 
It was also determined tha t  the presence of mercury 
f l o w  and a cathode discharge always contributed 
l e s s  than 0 . 5  pA t o  the baseline leakage current 

After the establishment of a baseline leakage 
current, a l l  i so la tors  except t e s t  2 of i so la tor  D 
and i so la tor  G suffered a rapid increase i n  leakage 
current at time periods ranging from about 100 t o  
600 hours. The increase of leakage current with 
time w a s  typically first exponential and generally 
then became l inear  After t h i s  onset of current, 
the isolator was considered t o  have fa i led  

A s  already mentioned, bead blast ing of the 
ceramic surfaces exposed t o  vacuum always restored 
the leakage current t o  a low value 
tha t  the leakage current associated with the f a i l -  
ure was always a surface leakage phenomenon 

This indicated 

Sources of Surface Contamination 

Because the prime fa i lure  mechanism has been 
associated with leakage across the i so la tor  sur- 
face, possible sources of surface contamination and 
tests which are relevant t o  the identif icat ion of 
such sources are discussed separately below 

Vacuum Faci l i ty  Environment Test 3 of iso- 
l a to r  B and t e s t  2 with i so la tor  E were addressed 
specifically t o  the question of vacuum pump o i l  
contamination of the i so la tors  O i l  contamination 
of insulator surfaces has been observed i n  several 
experiments ( 14, 15, 16) 
the former t e s t  a drop of diffusion pump o i l  w a s  
placed d i rec t ly  on the ceramic surface and iso- 
l a to r  B f a i l ed  i n  190 hours. Because t h i s  f a i lu re  
time w a s  s i m i l a r  t o  f a i lu re  time of the i so la tor  i n  
the previous t e s t ,  the exact importance of the o i l  
environment could not be specified at tha t  time 
Isola tor  E was then tested i n  a LHe pumped, o i l -  
f r ee  b e l l  jar and fa i led  i n  about the same time as  
similar units previously tested The ef fec ts  of 
vacuum pump o i l  were therefore eliminated as a pr i -  
mary source of surface contamination 

AS previously mentioned, i n  

A s  has been mentioned, oxidation of i so la tor  
components has been identif ied with certain of the 
i so la tor  short term fa i lures  Because a pa r t i a l  
pressure of oxygen always ex i s t s  i n  any vacuum 
f a c i l i t y ,  it appeared desirable t o  provide protec- 
t ion  against long term oxidation ef fec ts  To t h i s  
end, a l l  the metallic components of i so la tor  G were 
nickelplated 

Ceramic Type Aluminum oxide of three levels 
of purity were used i n  the i so la tor  t e s t s  It is 
l ike ly  tha t  the choice of insulator material did 
not strongly affect  i so la tor  l i fet imes Iso la tor  C, 
which was made of stock grade aluminum oxide, per- 
formed i n  a fashion equivalent t o  most of the iso- 
l a to r s  which used a higher puri ty insulator Also, 
i so la tor  D fa i led  immediately i n  t e s t  1 but ran f o r  
an extended time period i n  t e s t  2. 
mentioned, however, that i n  some t e s t s  surface con- 
tamination of low purity alum'n 

It should be 

oxides has been 
observed a f t e r  vacuum f i r ing ,  ?lY 

Sputtering. Ion sputtering could lead t o  the 
deposition of contaminants on the ceramic surface 
Ions could be made available e i ther  via plasma 
leakage from the cathode discharge, i f  present, or  
as a product of microdischarges d i rec t ly  across the 
i so la tor  The former source of ions is  not con- 
sidered l ike ly  as isolator A actually fa i led  more 
quickly when doubly shielded than when no shields 
were present The poss ib i l i ty  of microdischarges 
cannot be completely discounted a t  this time. 
ever, no evidence of p i t t ing  of metallic surfaces 
typical  of sputtering damage was ever observed on 
any iso la tor  a f t e r  fa i lure  

How- 

Chemical Reactions A brief  search was made 
t o  determine i f  chemical interactions with the bulk 
ceramic material were of importance In general, 
the temperatures required for significant  chemical 
e f fec ts  are f r 'n  excess of the t e s t  temperature 
of isolators.  'lSs It should be noted tha t  i n  many 
cases, such as fo r  chemisorption of H2 or  02, the 
r e s i s t i v i ty  of aluminum oxi e 

observed behavior of isolators.  

ctually increases 
with increasing temperature 819s i n  contrast t o  the 
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Evaporation from Isola tor  Components. 
iously suggested, many of the long term fa i lu re s  
are probably due t o  the evaporation and subse- 
quent condensation upon the ceramic surface of 
metals and/or metal oxides 
i n  the program t o  eliminate elemental materials of 
high vapor pressure (such as cadmium, zinc, and 
materials containing these elements such as s i lve r  
solder and solder flux) Following these steps 
long term iso la tor  f a i lu re s  s t i l l  occurred 

As prev- 

Steps were taken early 

Details of the evaporation, deposition, and 
consequent e l ec t r i ca l  conduct 'vit 
metal oxide films are complex~20, 
the presence of a 
of mass can occur~8 ,22 )  It is  tentat ively assumed 
herein tha t  the primary source of the metal or 
metal oxide was evaporation of metallic oxides 
formed on the hot ter  parts  of the isolator.  This 
seems l ike ly  fo r  several reasons: (1) The vapor 
pressure of the metals used appears t o  be too low 
t o  account for  sufficient  evaporated material t o  
cause the observed fai lures,  (2) The oxides of 
metals i n  some cases have vapor pressures many 
orders of magnitude larger than tha t  of the base 
metal, and (3)  Many of the physical trends of iso- 
la tor  leakage a f t e r  a long term fa i lu re  are very 
similar t o  the trends a f t e r  the short term fa i lures  
where the fa i lure  mechanism was almost certainly 
identif ied as metal oxide formation and deposition 
on the ceramic surface 

f th in  metal- 
especially i n  

l i ed  voltages where migration 

Evaporation of the metal oxide films can pro- 
duce e i ther  the elements o r  the oxide themselves 
as the major vapor constituents(20,23y and hence 
may resul t  i n  e i ther  a metal and/or metal oxide 
f i lm deposition upon a surface It is  interest ing 
t o  note tha t  the mass, or thickness, deposition of 
a vapor is not general1 a l inear function of time 
i n  the i n i t i a l  (Fig 8 )  In  addition, 
as seen i n  Figure 9, the r e s i s t i v i ty  of th in  m e t a l -  
l i c  f ' lm 
ness. t24y Although not certain, it is possible 
tha t  a combination of these two phenomena may be 
responsible fo r  the generally nonlinear onset of 
leakage current observed i n  the long term f a i l -  
ures (Fig. 4) 

i s  not generally l inear with f i lm thick- 

It has also been determined t h  t the conduc- 
t i v i t y  of both semic nductive and th in  
metallic films( 25, 26p depends exponentially upon 
the reciprocal of temperature The slope of the 
leakage current versus inverse temperature plotted 
on semilog paper i s  l inear and yields the activa- 
t ion  ener@;y fo r  the deposited material 
cases with a semiconductive film, such as a metal 
oxide, two l inear  slopes occur which ar i se  due t o  
the ef fec t  of impurities I n  addition, it has 
been found tha t  the activation energy sometimes 
decrea ed with t h e  (o r  increasing leakage cur- 
rent)  [IO) 

I n  some 

A s  mentioned previously, and shown i n  Figure 6, 
the functional dependence of leakage current on 
temperature w a s  s i m i l a r  t o  t ha t  described above. 
In  most C I V  and MIV t e s t s  two l inear  slopes were 
found, which is suggestive of a semiconductive 
layer with impurities However, i n  other i so la tor  
t e s t s  only one slope w a s  present, which may indi- 
cate the presence of a th in  metallic f i lm The 
strong dependence of activation energy upon such 
variables as thickness and impurities precluded 
identif icat ion of contaminant type by activation 
energy 

The r a t e  of increase of i so la tor  current w a s  
determined t o  r i s e  rapidly with increasing tem- 
perature (Fig. 5) The data f o r  i so la tors  A and E 
on Figure 5 were obtained a f t e r  the onset of leak- 
age current had occurred. Tlze exact reasons f o r  
the ra te  dependence on temperature is not known but 
it is  probably due t o  both increased oxidation of 
hot surfaces and evaporation of such oxides a t  
elevated temperature 

The volt-ampere characterist ics of i so la tor  C 
are shown i n  Figure 7 for  three t e s t  times A s  
was typica l  of most i so la tors  discussed herein, the 
leakage current was generally ohmic a f t e r  the onset 
of leakage current. I n  some cases the i so la tors  
exhibited s l igh t  non-ohmic behavior ear ly  i n  a t e s t  
(at low values of leakage current) 
current-voltage p lo ts  are consistent with metal or 
metal oxide th in  f i lm characterist ics.  

The observed 

Some evidence was obtained with i so la tors  A 
and E which demonstrated tha t  the r a t e  of increase 
of leakage current increased with increasing volt-  
age. Such data are d i f f i cu l t  t o  obtain, however, 
due t o  the d i f f icul ty  of maintaining a constant 
temperature i n  l i gh t  of the strong dependence of 
i so la tor  current on temperature. This evidence, 
along with the visual  observations of i so la tor  C 
mentioned previously, indicate tha t  migration of 
impurities or possibly sputtering due t o  microdis- 
charges could also have contributed t o  the increase 
of leakage current with time The re la t ive  impor- 
tance of these ef fec ts  are, however, not known a t  
t h i s  time 

V Conclusions 

Iso la tors  with various geometries and materials 
have been tested with and without mercury flow i n  
vacuum f a c i l i t y  environments with and without dif-  
fusion pump o i l  The onset of leakage current i n  
many iso la tors  occurred from almost immediately 
t o  many hundreds of hours 

It was f e l t  t ha t  some iso la tor  fa i lures  were 
caused by i so la tor  surface contamination during the 
spotwelding of shields on isolator end caps Local 
oxidation and evaporation during spotwelding prob- 
ably resulted i n  formation of a conductive f i lm on 
the i so la tor  surface Inadvertent oxidation during 
f a c i l i t y  shutdowa also resulted in  some short term 
iso la tor  fa i lures  

The long term fa i lure  mode was found also t o  
be due t o  isolator surface contamination The 
major source of contamination i s  f e l t  t o  be due 
t o  evaporation of metals or metal oxides and con- 
sequent condensation of a conductive f i lm on the 
ceramic surface The ra te  of increase of leakage 
current and t o t a l  leakage current increased approxi- 
mately exponentially with i so la tor  temperature 

T e s t s  on an oil- free vacuum f a c i l i t y  showed 
tha t  the long term fa i lure  mechanism was not pri-  
marily due t o  the presence of vacuum pump o i l  

Other possible fa i lure  mechanisms such as 
sputtering, chemical interactions, e f fec ts  of bulk 
ceramic are considered t o  be of secondary impor- 
tance fo r  the t e s t s  presented herein 

An isolator,  fabricated t o  eliminate contami- 
nation sources: did not show the onset of leakage 
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current typical  of s i m i l a r  i sola tors  tes ted 
t e s t  of t h i s  isola tor  i s  s t i l l  i n  progress. 

The 
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TABLX I - DESCRTFTION OF TESTED ISOLATORS 

End cap 
material 

Bi-plated 
Kovar 

Ta 

material 

Test 1 

Ceramic- Metal- Heater material 
metal llzlng 
braze 

Cu Mo-Mn See Ref 2 

" Nichrome 

TICUNI: None t 

Isola tor  shields 

Stainless steel 

Original 
Double stain-  

less s t e e l  
None 
Stainless s t ee l  
Original 
None 

Test 2 

Std, CIV)  

Test faci l i t :  

Diffusion pum 

Test 1 

Test 3 

B (Std. MIV) t 

Test 1 

Test 2 
Test 3 

Test 1 Unknown purity 
C A1203 

Ni-plated 
Kovar 

Nichrome 

Ceramic 

Stainless s t e e l  
Cryogenic pun 
Diffusion pun; 

Ni-Dlated stain-  
less s t ee l  I " 

TABLE I1 - ISOLATOR OPEFWTNG CONDITIONS AND TEST FESULTS 

Isolator Temperature, l- 

Test 3 

Test L 

Test L 
Test 2 

F 

460 

335 

*Activation energy measured before onset of leakage current 
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ALUMINA SPACERS-\ 
\ 

FINE MESH METAL SCREEN-, '\ KOVAR END C A P 1  

Figure 1. -Typical HG ion thruster segmented isolator (ref. 2) 
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(a) ISOLATOR A (CIV). 

(b) ISOLATOR B (MIV). 

C-73-2071 

(c) ISOLATOR C. 
Figure 2. - Isolator configurations. 



(d) ISOLATOR D 

HEATER SPOTWELDED ~ 9 9 . 8 7 0  AL2O3 
TOEND C A P S 7  M \-) 

4 
VAR END CAP 

(e) ISOLATOR E 

HEA 

(f) ISOLATOR F 

‘THEATER BRAZED To VAPoRIZER ,-STRAPS FOR SECURING SHlEL 
e -  - - -  - . .  d l  \ 

\ 

(g) ISOLATOR G (CIV) 
Figure 2 - Concluded. Isolator configurations. 
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Figure 7. - Current-voltage characteristics of isolator C 



Figure 8, - Condensed mass deposited vs t ime at 
various substrate temperatures (ref 21). 
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! 
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Figure 9. - Resistivity of sputtered and rapidly 
evaporated (2 s e d  silver f i lms as a funct ion 
of thickness (ref. 24). 

NASA-Lewis 


